-->

Number system

 

  1. What is number system?
    Answer: The system concerned with the number and represented by a sequence of digits is called number system. It plays a vital role in computing and electronics. Number system also refers to the digits, its arrangement, positional value, and base of number system.
  2. What is base or radix of number system?
    Answer: The total number of digits used by the particular number system is called base or radix of that number system. For example, Base of Binary number system is 2 because it uses two digits 0 and 1 only.
  3.  List the types of number system with their bases.
    Answer: There are four types of number system and their bases are given below:
    Number SystemBase
    (i) Binary Number System2
    (ii) Octal Number System8
    (iii) Decimal Number System10
    (iv) Hexadecimal Number System16
  4. Define Binary number system.
    Answer: The number system having base two(2) and consists of digits: 0 and 1 is called Binary number system.
  5. Define Octal number system.
    Answer: The number system having base eight(8) and consists of digits: 0,1,2,3,4,5,6, and 7 is called Octal number system.
  6. Define Decimal (Denary) number system.
    Answer: The number system having base ten(10) and consists of digits: 0,1,2,3,4,5,6,7,8 and 9 is called Decimal(Denary) number system.
  7. Define Hexadecimal number system.
    Answer: The number system having base sixteen(16) and consists of digits: 0,1,2,3,4,5,6,7,8, 9 and alphabets A,B,C,D,E and F is called Hexadecimal number system.
    Where,
    ABCDEF
    101112131415
  8. Why do digital computers use binary number system for its operations?
    Answer: The number system having base two and consists of digits: 0 and 1 is called Binary number system. It has two bits 0 and 1. An electronic circuit has two states either ON & OFF state. The bit 1 represents high voltage (ON state) and the bit 0 represents the low voltage (OFF state) of an electronic circuit. That's why a digital computer uses binary number for its operations.
  9. Fundamentals Rule for Number Conversion:
  10. Number System Conversion:
    We mainly focused on twelve(12) types of conversion for four types of number systems which can be grouped as follows based on the common method to be used for conversion.
    (i) Decimal to other systems(Binary / Octal / Hexadecimal) conversion
    (ii) Other systems to Decimal conversion
    (iii) Binary to Octal and Hexadecimal Conversion
    (iv) Octal and Hexadecimal to Binary Conversion
    (v) Octal to Hexadecimal Conversion
    (vi) Hexadecimal to Octal Conversion
  11. Decimal to Binary, Octal, and Hexadecimal Conversion
    A decimal number is converted into other number systems by using successive division by to be converted number base(e.g. if binary then by 2) where remainders noted during successive divisions are written in a bottom-up approach to get the required number system.

    The fraction part of any decimal number is converted into other numbers by successive multiplication to the given number with a respective base of to be converted number (e.g. if binary then by 2). The process is terminated when we get zero(0) in the fraction part of the product. When we fail to get zero(0), then we may terminate the process after 5th round. The integer values that come from each successive multiplication are written in the top-down approach.
    Conversion 1: (42)10=(?)2
    242Remainder
    2210
    2101
    250
    221
    210
    01
    ∴(42)10=(101010)2
    Conversion 2: (42.54)10=(?)
    242Remainder
    2210
    2101
    250
    221
    210
    01
    ∴(42)10=(101010)2
    Also,
    Fraction x 2 = ProductInteger Part
    0.54x2=1.081
    0.08x2=0.160
    0.16x2=0.320
    0.32x2=0.640
    0.64x2=1.281
    ∴(42.54)10=(101010.10001)2
    Conversion 3: (123)10=(?)8
    8123Remainder
    8153
    817
    01
    ∴(123)10=(173)8
    Conversion 4: (123.54)10=(?)
    8123Remainder
    8153
    817
    01
    ∴(123)10=(173)8
    Also,
    Fraction x 8 = ProductInteger Part
    0.54x8=4.324
    0.32x8=2.562
    0.56x8=4.484
    0.48x8=3.843
    0.84x8=6.726
    ∴(123.54)10=(173.42436)8
    Conversion 5: (123)10=(?)16
    16123Remainder
    16711 (B)
    07
    ∴(123)10=(7B)16
    Conversion 6: (123.54)10=(?)16 
    16123Remainder
    16711 (B)
    07
    ∴(123)10=(7B)16
    Also,
    Fraction x 16 = ProductInteger Part
    0.54x16=8.648
    0.64x16=10.2410(A)
    0.24x16=3.843
    0.84x16=13.4413(D)
    0.44x16=7.047
    ∴(123.54)10=(7B.8A3D7)16
  12. Binary, Octal, and Hexadecimal to Decimal Conversion
    Other systems(Binary, Octal & Hexadecimal) are converted into decimal number by calculating sum of product of each given digit and its corresponding place value ( in terms of power of its base which begins from 0 and increases for integer part and from -1 and decreases for a fractional part)
    Conversion 7 : (101010)2=(?)10
    Answer:
    Face Value101010
    Place Value252423222120

    =1x25+0x24+1x23+0x22+1x21+0x20
    =1×32+0×16+1×8+0×4+1×2+0×1
    =32+0+8+0+2+0 
    =(42)10
    ∴(101010)2=(42)10
    Conversion 8: (101.101)2=(?)10
    Answer:
    Face Value101.101
    Place Value2221202-12-22-3

    =1x22+0x21+1x20+1x2-1+0x2-2+1x2-3
    =1×4+0×2+1×1+1×0.5+1×0.25+0×0.125
    =4+0+1+0.5+0+0.125
    =(5.625)10
    ∴(101.101)2=(5.625)10
    Conversion 9: (345)8=(?)10
    Answer:
    Face Value345
    Place Value828180

    =3x82+4x81+5x80
    =3×64+4×8+5×1
    =192+32+5
    =(229)10
    ∴(345)8=(229)10
    Conversion 10: (31.76)8=(?)10
    Answer:
    Face Value31.76
    Place Value81808-18-2

    =3x81+1x80+7x8-1+6x8-2
    =3x8+1x1+7x0.125+6x0.015625
    =24+1+0.875+0.09375
    =(25.96875)10
    ∴(31.76)8=(25.96875)10
    Conversion 11: (ABC)16=(?)10
    Answer:
    We Know ,
    ABCDEF
    101112131415

    Now,
    Face ValueABC
    Place Value162161160

    =Ax162+Bx161+Cx160
    =10×256+11×176+12×1
    =2560+176+12 
    =(2748)10
    ∴(ABC)16=(2748)10
    Conversion 12: (3F.7A)16=(?)10
    Answer:
    Face Value3F.7A
    Place Value16116016-116-2

    =3x161+Fx160+7x16-1+Ax16-2
    =3x16+15x1+7x0.0625+10x0.00390625
    =48+15+0.4375+0.0390625
    =(63.4765625)10
    ∴(3F.7A)16=(63.4765625)10
  13. Binary to Octal Conversion

    A binary number is converted into an octal number by making a group of 3 BITS and grouping should be done from right to left for integer part and left to right for fraction part. So, this method is called Grouping Method. If there are less than 3 BITS in the last group then required number of zeroes can be added in the left-hand side for integer part and in the right-hand side for the fraction part to make the group of 3 BITS. Then equivalent octal value of each group is written using Binary - Octal conversion table.

    Table I: Binary-Octal Conversion Table
    Binary (2)Octal (23=8)
    0000
    0011
    0102
    0113
    1004
    1015
    1106
    1117

    Conversion 13: (1011101)2=(?)8
    Answer:
    3 BITS Group001011101
    Octal Value135
    ∴(1011101)2=(135)8
    Conversion 14: (1011101.1011001)2=(?)8
    Answer:
    3 BITS Group001011101.101100100
    Octal Value135.544
    ∴(1011101.1011001)2=(135.544)8

  14. Binary to Hexadecimal Conversion
    A binary number is converted into hexadecimal number by making a group of 4 BITS and grouping should be done from right to left for integer part and left to right for fraction part. So, this method is called Grouping Method. If there are less than 4 BITS in the last group then required number of zeroes can be added in the left-hand side for integer part and in the right-hand side for the fraction part to make the group of 4 BITS. Then equivalent octal value of each group is written using Binary - Hexadecimal conversion table.

    Table II: Binary-Hexadecimal Conversion Table
    Binary (2)Hexadecimal (24=16)
    00000
    00011
    00102
    00113
    01004
    01015
    01106
    01117
    10008
    10019
    1010A
    1011B
    1100C
    1101D
    1110E
    1111F

    Conversion 15: (1011101)2=(?)16
    Answer:
    4 BITS Group01011101
    Hexadecimal513(D)
    ∴(1011101)2=(5D)16
    Conversion 16: (1011101.101111)2=(?)16
    Answer:
    4 BITS Group01011101.10111100
    Hexadecimal513(D).11(B)12(C)
    ∴(1011101.101111)2=(5D.BC)16

  15. Octal to Binary Conversion
    Octal number is converted into binary number by breaking each digits of the given octal number into a group of 3 BITS   using Table I: Binary-Octal Conversion Table. So, this method is called Breaking Method.
    Conversion 17: (567)8=(?)2
    Answer:
    Octal Digits567
    Equivalent BITS101110111
    ∴(567)8=(101110111) 2
    Conversion 18: (567.123)8=(?)2
    Answer:
    Octal Digits567.123
    Equivalent BITS101110111.001010011
    ∴(567.123)8=(101110111.001010011)2

  16. Hexadecimal to Binary Conversion
    Hexadecimal number is converted into binary number by breaking each digits of the given hexadecimal number into a group of 4 BITS using Table II: Binary-Hexadecimal Conversion Table. So, this method is called Breaking Method.
    Conversion 19: (A43)16=(?)2
    Answer:
    Hexadecimal DigitsA43
    Equivalent BITS101001000011
    ∴(A43)16=(101001000011) 2
    Conversion 20: (4A3.EF)16=(?)2
    Answer:
    Hexadecimal Digits4A3.EF
    Equivalent BITS010010100011.11101111
    ∴(4A3.EF)16=(010010100011.11101111)2

  17. Octal to Hexadecimal Conversion

    Octal number is converted into hexadecimal number by using any one of the following two double conversion methods.
    Method I:
    Octal → Binary
    Binary → Hexadecimal
    Method II:
    Octal → Decimal
    Decimal → Hexadecimal

    Conversion 21: (567)8=(?)16
    Answer:
    Method - I

    Here, given octal number is first converted into equivalent binary number as:
    Octal Digits567
    Equivalent BITS101110111
    ∴(567)8=(101110111)2
    Now, obtained binary number is converted into hexadecimal number as:
    4 BITS Group000101110111
    Hexadecimal Digits177

    So, (101110111)2=(177)16
    ∴(567)8=(177)16
    Method - II

    Here, given octal number is first converted into equivalent decimal number.
    Face Value567
    Place Value828180

    =5x82+6x81+7x80
    =5×64+6×8+7×1
    =320+48+7
    =(375)10
    Now, the obtained decimal number is converted into hexadecimal number as:
    16375Remainder
    16237
    1617
    01
    So, (375)10=(177)16
    ∴(567)8=(177)16
    Conversion 22: (123.456)8=(?)16
    Answer: Here, given octal number is first converted into equivalent binary number as:
    Octal Digits123.456
    Equivalent BITS001010011.100101110
    ∴(123.456)8=(1010011.100101110)2
    Now, obtained binary number is converted into hexadecimal number as:
    4 BITS Group01010011.100101110000
    Hexadecimal Digits53.970

    So, (1010011.100101110)2=(53.970)16
    ∴(123.456)8=(53.97)16
  18. Hexadecimal to Octal Conversion
    Hexadecimal number is converted into octal number by using any one of the following two double conversion methods.
    Method I:
    Hexadecimal → Binary
    Binary → Octal
    Method II:
    Hexadecimal → Decimal
    Decimal → Octal

    Conversion 23: (5E7)16=(?)8
    Answer:
    Method - I

    Here, given octal number is first converted into equivalent binary number as:
    Hexadecimal Digits5E7
    Equivalent BITS010111100111
    ∴(5E7)16=(10111100111)2
    Now, obtained binary number is converted into octal number as:
    3 BITS Group010111100111
    Octal Digits2747

    So, (10111100111)2=(2747)8
    ∴(5E7)16=(2747)8
    Method - II

    Here, given hexadecimal number is first converted into equivalent decimal number.
    Face Value5E7
    Place Value162161160

    =5x162+Ex161+7x160
    =5×256+14×16+7×1
    =1280+224+7
    =(1511)10
    Now, the obtained decimal number is converted into hexadecimal number as:
    81511Remainder
    81887
    8234
    827
    02
    So, (1511)10=(2747)8
    ∴(5E7)16=(2747)8
    Conversion 24: (5E7.3D)16=(?)8
    Answer: Here, given hexadecimal number is first converted into equivalent binary number as:
    Hexadecimal Digits5E7.3D
    Equivalent BITS010111100111.00111101
    ∴(5E7.3D)16=(10111100111.00111101)2
    Now, obtained binary number is converted into octal number as:
    3 BITS Group010111100111.001111101
    Octal Digits2747.175
    So, (10111100111.00111101)2=(2747.175)16
    ∴(5E7.3D)16=(2747.175)16
--------------------------------------------------------------------------------------
Number system credit goes to PLK sir(with thanks😃)
We can follow him on:

No comments:

Post a Comment